
Journal of Testing and Evaluation, October 2006 Vol XX, No. X 
Paper ID:  

David Hirsch,1 Sam Motto,2 Gary Peyton,3 and Harold Beeson4   

Proficiency Testing for Evaluating Aerospace Materials Test 
Anomalies 

REFERENCE:  Hirsch, D., Motto, S., Peyton, G., and Beeson, H., “Proficiency Testing for Evaluating 
Aerospace Materials Test Anomalies,” Flammability and Sensitivity of Materials in Oxygen-Enriched 
Atmospheres:  Eleventh Volume, ASTM STP 1479, D. B. Hirsch, R. Zawierucha, T. A. Steinberg, and 
H. Barthelemy, Eds., ASTM International, West Conshohocken, PA, 2006. 

ABSTRACT: ASTM G 86 and ASTM G 74 are commonly used to evaluate materials 
susceptibility to ignition in liquid and gaseous oxygen systems.  However, the methods 
have been known for their lack of repeatability.  The inherent problems identified with 
the test logic would either not allow precise identification or the magnitude of problems 
related to running the tests, such as lack of consistency of systems performance, lack of 
adherence to procedures, etc.  Excessive variability leads to increasing instances of 
accepting the null hypothesis erroneously, and so to the false logical deduction that 
problems are nonexistent when they really do exist.  This paper attempts to develop and 
recommend an approach that could lead to increased accuracy in problem diagnostics 
by using the 50% reactivity point, which has been shown to be more repeatable.  The 
initial tests conducted indicate that PTFE and Viton® A (for pneumatic impact) and 
Buna S (for mechanical impact) would be good choices for additional testing and 
consideration for inter-laboratory evaluations.  The approach presented could also be 
used to evaluate variable effects with increased confidence and tolerance optimization. 
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Introduction 
Proficiency testing is commonly defined as a means of checking laboratory testing 

performance through periodic inter-laboratory tests.  For many test methods, results from 
proficiency testing are good indicators of a laboratory’s testing capability.  Information obtained 
from proficiency testing helps to identify problems in a laboratory and lead to solutions.  In 
addition to assisting laboratories in making improvements when necessary, results from 
proficiency testing can be used to improve test methods and contribute to the development of 
precision and accuracy statements [1, 2]. 
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ASTM Standard Test Method for Determining Ignition Sensitivity of Materials to 
Mechanical Impact in Ambient Pressure Liquid Oxygen and Pressurized Liquid and Gaseous 
Oxygen (G 86) and ASTM Standard Test Method for Ignition Sensitivity of Materials to Gaseous 
Fluid Impact (G 740) are commonly used to evaluate susceptibility to ignition in liquid and 
gaseous oxygen systems [3-7].  However, the methods have been known for their lack of 
repeatability [8-12].  The inherent problems identified with the test logic would either not allow 
precise identification or the magnitude of problems related to running the tests, such as lack of 
consistency of systems performance, lack of adherence to procedures, etc.  Excessive variability 
leads to increasing instances of accepting the null hypothesis erroneously, and so to the false 
logical deduction that problems are nonexistent when they really do exist [13].   

A previous study [14] identified the importance of properly selecting test conditions for 
evaluating repeatability of aerospace materials flammability testing and provided an approach 
that would increase the diagnostics capability of inter-laboratory flammability testing.  This 
paper attempts to develop and recommend an approach that could lead to increased accuracy in 
problem diagnostics related to some test methods used to evaluate materials oxygen 
compatibility.   

Experimental 

Materials 

The materials evaluated are described in Table 1.  The mechanical impact samples were 
17-mm diameter discs, while the pneumatic impact samples were 4.8-mm diameter discs.  The 
sample thickness was approximately 1.5 mm.   

 
 

TABLE 1—Materials tested. 
Generic or Trade Name Chemical Name or Composition 

Plastics 
Zytel 42® a polyamide 6,6 (Nylon 6,6) 
PTFE polytetrafluoroethylene 
Kel-F 81® b polychlorotrifluoroethylene 
Neoflon M400H® c polychlorotrifluoroethylene 
Elastomers 
Silicone rubber polysiloxane 
Viton® d A copolymer of vinylidene fluoride and hexafluoropropylene 
Buna S  polystyrene/butadiene 
Neoprene polychloroprene 
EPDM polyethylene/propylene diene 
Nitrile rubber polyacrylonitrile/butadiene 
a Zytel® is a registered trademark of E. I. DuPont de Nemours & Co., Wilmington, DE. 
b Kel-F® is a registered trademark of M. W. Kellogg Co., Jersey City, NJ. 
c Neoflon® is a registered trademark of Daikin America Inc., Orangeburg, NY. 
d Viton® is a registered trademark of DuPont Dow Elastomers, Wilmington, DE. 
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Test Conditions and Methods 

Pneumatic impact testing was conducted following ASTM G 74, which evaluates the relative 
sensitivity of materials to dynamic pressure impacts.  First, a sample was placed in the specimen 
area of the test chamber subassembly, and then an upstream accumulator was pressurized with 
gaseous oxygen (GOX).  Next, the chamber was purged with GOX, and the sample was exposed 
to a sequence of five impacts by opening a high-speed valve between the accumulator and the 
test chamber.  The test chamber was pressurized from ambient pressure to 95% of test pressure 
in less than 50 ms.  A reaction was indicated by an abrupt increase in test specimen temperature 
or by an obvious change in material appearance, as observed during posttest examination.   

The tests were conducted following the Bruceton method [15].  The first test was conducted 
at a pressure estimated to result in a 50% probability of reaction.  For subsequent testing, if a 
reaction occurred, the next test was conducted at the next lower pressure level; if no reaction 
occurred, the next test was conducted at the next higher pressure.  The test sequence was 
completed when 20 tests were performed, counting from the first test that produced a change in 
results.  The 50% reaction pressure level was determined from [15]: 
 

p50 = p0 + d[(A/N) + 0.5]  (1) 
where: 
p50 = 50% reaction pressure 
p0 = lowest pressure at which no reactions were observed 
d =  pressure increment, 1.7 MPa 
A = sum of frequency of occurrence at each pressure increment times the number of 

increments above the p value for each observation in the N total 
N = total number of less frequent events (reactions or no reactions) from the last 20 samples 

tested 
 
Ambient-pressure mechanical impact testing in liquid oxygen (LOX) and mechanical impact 

tests in GOX at 20.6 MPa were conducted per ASTM G 86.  For tests in ambient-pressure liquid 
oxygen, each sample was placed in an aluminum sample cup on top of a stainless steel disc and 
prechilled in LOX for at least 40 min.  A prechilled striker pin was then centered in the sample 
cup.  The sample cup was placed in a sample holder that was cooled with liquid nitrogen.  A 
9.07-kg plummet was dropped from a preset height on the striker pin, which in turn impacted the 
sample.  Visual flash, audible report, or charring of the sample was considered evidence of 
reactions. 

For mechanical impact tests in pressurized GOX, each sample was placed in a sample cup 
with an Inconel 718 base, which was then mounted in a test chamber.  The test chamber was 
purged with the test gas and then pressurized to 20.6 MPa with GOX.  A 9.07-kg plummet was 
dropped from selected heights onto a counterloader pin, which transmitted the energy to the test 
sample by means of a striker pin.  Abrupt increases of test chamber pressure or temperature, light 
emission, or material charring were considered evidence of reaction. 

The mechanical impact test logic used was similar to the logic used for pneumatic impact.  
The first test was conducted at a plummet height estimated to produce 50% reactions.  For 
subsequent testing, if a reaction occurred, the next test was conducted at the next lower height; if 
no reaction occurred, the next test was conducted at the next higher level.  The test sequence was 
completed when 20 tests were performed, counting from the first test that produced a change in 
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results in successive energy levels.  Alternatively, additional tests were conducted on selected 
materials to determine if performing 30 tests instead of 20 would make a difference in the 50% 
point determination.  The 50% impact height that resulted in 50% reactions was determined with 
an equation similar to equation 1.  The 50% mechanical impact test methodology is described in 
detail elsewhere [16].  For all test methods used, the testing was repeated to obtain five 
replicates. 

Results and Discussion 
The pneumatic and mechanical 50% reactivity levels are summarized in Tables 2 and 3.   

 
TABLE 2—Pneumatic impact 50% reaction levels.   

Material 50% point,a MPa Standard  
deviation, MPa 

Coefficient of 
variation 

Silicone 20.80 3.49 0.168 
PTFE 21.91 1.02 0.047 
Viton A 16.11 0.85 0.053 
Kel-F 24.17 1.70 0.070 
Neoflon M400H 24.46 2.68 0.110 

a Average of five tests 
  

Statistically there were no differences at the 95% significance level between the average 
values obtained for the 50% reactivity points for Kel-F 81 and Neoflon M400H.  PTFE and 
Viton A resulted in the lowest coefficient of variation, and would be good choices for additional 
testing and consideration in inter-laboratory evaluations.   
 

TABLE 3—Mechanical impact 50% reaction levels.   
Material Test 

Environment 
20 samples 30 samples 

50% 
Point,c 

J 

Standard 
Deviation, 

J 

Coefficient 
of Variation 

50% 
Point,c 

J 

Standard 
Deviation,

J 

Coefficient 
of Variation 

EPDM LOXa 55.0 7.8 0.142 55.5 6.1 0.110 
Silicone LOXa 25.3 5.6 0.221 ... ... ... 
Nitrile LOXa 44.1 7.3 0.166 44.8 5.3 0.118 
Neoprene LOXa 54.5 5.9 0.108 51.5 5.8 0.113 
Buna S LOXa 65.3 7.9 0.121 65.9 4.3 0.065 
Buna S GOXb 50.6 5.7 0.113 50.7 5.3 0.105 

a Tests conducted at White Sands Test Facility (WSTF) ambient pressure, 85 kPa 
b Tests conducted at 20.6 MPa 
c Average of five tests 
 

Because of system limitations, the mechanical impact 50% point could not be obtained for 
materials with less reactivity.  In ambient-pressure LOX, silicone had a much lower mechanical 
impact 50% reactivity level than the other materials considered less oxygen compatible.  
Statistically there were no differences at the 95% significance level between the average values 
obtained with 20 and 30 samples; however, testing 30 samples reduced the coefficient of 
variation significantly in most instances.  Consequently, determining the 50% point with 30 
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samples will reduce the instances of accepting the null hypothesis erroneously.  Buna S resulted 
in lowest variability in mechanical impact and is the material of choice for further intra- and 
inter-laboratory variability studies. 

The pneumatic and mechanical impact results have shown to be affected by many variables 
[10, 12].  The precision and accuracy of these tests could be affected by the high-speed valve 
performance (for pneumatic impact), consistency of impact energy imparted to the sample (for 
mechanical impact), precision and accuracy of pressure measurements, and consistency of 
sample preparation.  The tolerances used for test monitoring and variable control could also 
affect the results.  Tolerance optimization is desirable, since too large a tolerance leads to 
excessive data variability, while a smaller tolerance than needed results in unnecessary expenses.  
Evaluation of variable effects and tolerance optimization may be achieved with a higher 
confidence if a repeatable test logic such as the 50% reactivity is used in a multifactorial 
experimental design, such as the Plackett-Burman approach [17]. 

Reaction frequencies in mechanical impact tests are presented in Tables 4 and 5.  Because of 
the test logic, data presented in Tables 4 and 5 concentrate around the 50% reactivity point. 

 
TABLE 4—Mechanical impact reaction frequencies for materials at various impact energies.   

Selected values for conditions at which at least 20 samples were tested.   
Tests conducted in LOX at the WSTF facility pressure, 85 kPa. 

Impact 
energy, J 

Zytel EPDM Nitrile Neoprene Viton A Buna S 

98 63.0 ... ... ... 62.5 ... 
86 61.1 ... ... ... 55.9 64.0 
74 42.1 ... ... ... 40.0 61.9 
65 42.4 60.0 ... 69.2 ... 38.5 
56 28.6 55.3 68.0 61.0 ... 37.5 
49 ... 46.3 62.2 42.5 ... ... 
43 ... 13.6 44.1 31.8 ... ... 
37  ... ... 44.0 ... ... ... 

 
 

TABLE 5—Mechanical impact reaction frequencies for materials at various impact energies.   
Selected values for conditions at which at least 20 samples were tested.   

Tests conducted in GOX at 20.6 MPa. 
Impact 

energy, J 
EPDM Silicone Nitrile Neoprene Viton A Buna S 

98  73.1 43.1a 25.8 62.9 ... ... 
86 58.3 43.2a 8.3 44.4a 45.8a ... 
74 41.2 31.8 ... 57.1a 52.2a ... 
65 29.0 ... ... 33.3 43.5 85.2 
56 ... ... ... ... ... 54.5 
49 ... ... ... ... ... 47.5 
43 ... ... ... ... ... 29.2 
a  As indicated, five 50% reactivity point evaluations were conducted for each material.  More extensive data are 

required to draw conclusions about the reactivity inversions noted. 
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In mechanical impact tests in ambient-pressure LOX, materials considered more oxygen-
compatible (Viton A, Zytel) performed better than the others (EPDM, Nitrile, Neoprene).  It is 
interesting to note that in this test the vast majority of reactions on Zytel were not obtained at the 
first impact. 

In mechanical impact tests in pressurized GOX, some materials (Nitrile, EPDM to an extent) 
performed better than others traditionally considered suitable for oxygen service (such as 
Viton A).  This confirms previous data that indicate Nitrile rubber was less reactive than Viton A 
and Silicone under conditions of higher impact energies [18].   

Conclusions and Recommendations 
ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to 

ignition in liquid and gaseous oxygen systems.  The methods have been known for their lack of 
repeatability.  The inherent problems identified with the test logic would either not allow precise 
identification or the magnitude of problems related to running the tests, such as lack of 
consistency of systems performance, lack of adherence to procedures, etc.   

Excessive variability leads to increasing instances of accepting the null hypothesis 
erroneously, and so to the false logical deduction that problems are nonexistent when they really 
do exist.  This paper attempts to develop and recommend an approach that could lead to 
increased accuracy in problem diagnostics by using the 50% reactivity point, which has been 
shown to be more repeatable.  Although statistically for mechanical impact there were no 
differences at the 95% significance level between the 50% reactivity average values obtained 
with 20 and 30 samples, testing 30 samples reduced the coefficient of variation significantly in 
most instances.  Consequently, determining the 50% point with 30 samples will reduce the 
instances of accepting the null hypothesis erroneously.  The initial tests conducted indicate that 
PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good 
choices for additional testing and consideration in inter-laboratory evaluations.  The approach 
could also be used to evaluate variable effects with increased confidence and tolerance 
optimization.   
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